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Abstract. It is well known that velocities do not commute in the presence of an electromagnetic field. This
property implies that angular algebra symmetries, such as the sO(3) and Lorentz algebra symmetries, are
broken. To restore these angular symmetries we show the necessity of adding the Poincaré momentum M
to the simple angular momentum L. These restorations performed successively in a flat space and in a
curved space lead in each case to the generation of a Dirac magnetic monopole. In the particular case of
the Lorentz algebra we consider an application of our theory to gravitoelectromagnetism. In this last case
we establish a qualitative relation giving the mass spectrum for dyons.

1 Introduction

The concept of symmetry breaking is fundamental in sci-
ence and particularly in physics. In this work we will focus
our attention on the effects of the non-commutativity on
the angular algebra symmetries such as the sO(3) algebra
symmetry and the Lorentz algebra symmetry. Theories
in non-commutative geometry have been at the center of
recent interest [1,2]. Instead of the non-commutativity be-
tween coordinates x =

{
xi

}
i=1,N

here we will rather use
non-commutativity between the velocities ẋ =

{
ẋi

}
i=1,N

,
leaving the study of the more general case where neither
coordinates nor velocities commute for another paper [3].
As we will see in the following, in the tangent bundle space
T (M) of a manifold M endowed with a Poisson struc-
ture, the non-commutativity between velocities implies a
gauge curvature F ij(x), i.e. an electromagnetic field. This
gauge curvature breaks explicitly the angular algebra sym-
metry of the dynamical system. The particular case of the
breaking of the Lorentz algebra in the presence of a co-
variant Hamiltonian was already investigated in a recent
paper [4]. Here we embedded the formalism used in [4] in
a more general one in, defining a Poisson structure where
the dynamics are governed by a covariant Hamiltonian. We
also show that the brackets defining the Poisson structure
on T (M) are equivalent (at least up to the second order) to
Moyal brackets defined on the tangent bundle space T (M)
where the non-commutative parameters are related to the
electromagnetic field.

Contrary to the standard approach used commonly in
the study of the gauge theories, we do not settle our formal-
ism in the cotangent bundle space T ∗(M), i.e. the space
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of coordinates {x,p}, but we continue the prospection of
the gauge theories in the tangent bundle space T (M), i.e.
the space of coordinates {x, ẋ}. The main reason for this
choice is that the generalized momentum p is not gauge
invariant, and this is particularly important when we con-
sider angular algebra symmetry. Indeed, the Lie algebra
is always trivially realized when the angular momentum
L is expressed in terms of the generalized momentum p.
In the tangent bundle space T (M) we show that the an-
gular algebra symmetry is broken by the electromagnetic
field issuing from the non-commutativity between veloc-
ities. This angular algebra symmetry is restored by the
introduction of the Poincaré momentum [5] which implies
the existence of a Dirac magnetic monopole [6–8]. Here we
insist more than in [7] on the link between the restoration
of the angular Lie algebra symmetries and the generation
of magnetic monopoles. Note that a similar monopole also
arises from the electromagnetic U(1) gauge theory when
one requires the dual symmetry under rotation of the elec-
tric and magnetic fields in the free Maxwell equations. In
our case we do not need the dual symmetry (except in
Sect. 4 where we use the Hodge duality for other purposes)
since the monopole field naturally arises from the restora-
tion of the angular algebra symmetry which was broken
by the electromagnetic field. In this paper we perform the
restoration for the sO(3) algebra symmetry successively in
a flat and in a curved space and then for the local Lorentz
algebra symmetry. Finally, at the end of the paper, using
the Hodge duality on our theory and the recent work of
Mashhoon [9] we develop the application to the gravito-
electromagnetism theory.

We would like to remark that the Moyal brackets we use
in this paper are closely connected to those introduced by
Feynman in his remarkable demonstration of the Maxwell
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equations where he tried to develop a quantization pro-
cedure without the resort to a Lagrangian or a Hamilto-
nian. Feynman’s ideas were exposed by Dyson in an elegant
publication [10]. The interpretation of Feynman’s deriva-
tion of the Maxwell equations has aroused great interest
among physicists. In particular, Tanimura [11] has general-
ized Feynman’s derivation in a Lorentz covariant form with
a scalar time evolution parameter. An extension of Tan-
imura’s approach has been achieved [12] in using the Hodge
duality to derive the two groups of Maxwell equations with
a magnetic monopole in flat and curved spaces. In [13] the
descriptions of relativistic and non-relativistic particles in
an electromagnetic field was studied, whereas in [14] a dy-
namical equation for spinning particles was proposed. A
rigorous mathematical interpretation of Feynman’s deriva-
tion connected to the inverse problem for Poisson dynamics
has been formulated in [15]. Also the papers of [16,17] con-
sidered Feynman’s derivation in the frame of Helmholtz’s
inverse problem for the calculus of variations. More re-
cently, some works [18–20] have provided new looks on
the Feynman’s derivation of the Maxwell equations. One
may mention a tentative extension of Feynman’s derivation
of the Maxwell equations to the case of non-commutative
geometry using the standard Moyal brackets [21].

This paper is organized as follows. In Sect. 2 we intro-
duce the formalism used throughout the paper. The dy-
namical equation will be given by a covariant Hamiltonian
defined as in Goldstein’s textbook [22] and by deformed
Poisson brackets. We show that these deformed Poisson
brackets can be defined as the second order approximation
of generalized Moyal brackets. In Sect. 3 we recall how to
restore the sO(3) algebra symmetry in the case of a flat
space [4] and we extend the restoration to the case of a
curved space. In Sect. 4 we restore the Lorentz algebra sym-
metry in a curved space and we propose an application of
our formalism to the case of the gravitoelectromagnetism
theory. We then derive a qualitative relation giving the
mass spectrum for dyons. In Sect. 5 we summarize the
main achievements of this work.

2 Mathematical foundations

Let M be a N -dimensional vectorial manifold diffeomor-
phic to R

N . Let a particle with a mass m and an electrical
charge q be described by the vector x = {xi}i=1,...,N which
defines its position on the manifold M. Let τ be the pa-
rameter of the group of diffeomorphisms G : R×M→M
such as G(τ,x) = Gτx = x(τ). Then taking τ as the time
parameter of our physical system we are able to define a ve-
locity vector ẋ ∈ M as ẋ = dx

dτ = Gτx = {ẋi(τ)}i=1,...,N .
Let T (M) be the tangent bundle space associated with
the manifoldM; a point on T (M) is then described by a
2N -dimensional vector X = {x, ẋ}.

2.1 Poisson structure

Let A0(T (M)) = C∞(T (M), R) be the algebra of differ-
ential functions defined on the manifold T (M). We de-
fine a Poisson structure on T (M) which is an internal

skew-symmetric bilinear multiplicative law on A0(T (M))
denoted (f, g)→ [f, g] and satisfying the Leibnitz rule

[f, gh] = [f, g]h + [f, h]g (1)

and the Jacobi identity

J(f, g, h) = [f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0. (2)

The manifold T (M) with such a Poisson structure is called
a Poisson manifold. We define a dynamical system on the
Poisson manifold T (M) by the following differential equa-
tion:

df

dτ
= [f, H], (3)

where H ∈ A0(T (M)) is the Hamiltonian of the dynami-
cal system.

With such definitions we derive the following important
relations for functions belonging to A0(T (M)):

[f(X), h(X)] = {f(X), h(X)} (4)

+
[
xi, xj

] ∂f(X)
∂xi

∂h(X)
∂xj

+
[
ẋi, ẋj

] ∂f(X)
∂ẋi

∂h(X)
∂ẋj

,

where we have introduced the Poisson-like brackets de-
fined by

{f(X), g(X)}

=
[
xi, ẋj

](
∂f(X)

∂xi

∂h(X)
∂ẋj

− ∂f(X)
∂ẋi

∂h(X)
∂xj

)
. (5)

We can think of the relation (4) as the simple deformation
of the Poisson-like brackets introduced in (5). It is obvious
that the tensors

[
xi, xj

]
and

[
ẋi, ẋj

]
are skew symmetric.

We introduce then the following notation:[
xi, xj

]
= λΘij(X) , λ ∈ R, (6)[

xi, ẋj
]

= γGij(X) , γ ∈ R, (7)[
ẋi, ẋj

]
= γ′F ij(X) , γ′ ∈ R, (8)

where Gij(X) is a priori any N × N tensor, and where
Θij(X) and F ij(X) are two N ×N skew-symmetric ten-
sors, F ij(X) being related to the electromagnetic tensor
introduced in a preceding paper [8] .

In the following we will require the property of locality,

Θij(X) = 0, (9)

leaving the study of the Θij(X) �= 0 case for another
work [3]. The property (9) expresses the commutativity
of the internal skew-symmetric bilinear law involving po-
sitions x on the manifold M whereas taking F ij(X) �= 0
implies non-commutativity between the velocities ẋ.

Theproperty of locality (9) and the fact that the velocity
vector has to verify the dynamical equation (3) imply the
following general expression for the Hamiltonian:

H =
1
2

mgij(x)ẋiẋj + f(x), (10)
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where we take λ = 1/m and where

Gij(X) = gij(x) (11)

is now the metric tensor defined on the manifold M, the
function f(x) being any only position dependent function
belonging to A0(T (M)).

2.2 Generalized Moyal brackets

In this section we show that we can embed our construction
in a more general formalism by introducing a generaliza-
tion of the Moyal brackets defined over the tangent bundle
space. Indeed we will show that the brackets defined by
the relation (4) can be considered as the second order
expansion of the Moyal brackets where the roles of the
non-commutative parameters are played by the tensors Θ,
F and G defined in the preceding section.

Let now f and h be functions belonging to A0(T (M)).
Then we can define a Moyal star product � : T (M) ×
T (M)→ T (M) such as

f(X) � h(X) = f(X) exp (A (X,Y)) h(Y)|X=Y , (12)

where

A (X,Y) =
1
2

←−−−
∂

∂Xα
aαβ(X)

−−−→
∂

∂Yβ
, α, β = 1, . . . , 2N.

(13)
Here X,Y ∈ T (M), and the differential operators

←−−−
∂

∂Xα
,

−−−→
∂

∂Yβ

are understood to act respectively on the left and on the
right side of the expression. To this non-commutative prod-
uct � we can associate a particular commutator which is
known as the Moyal brackets,

[f(X), h(X)]� = f(X) � h(X)− h(X) � f(X). (14)

Now if we give to the 2N × 2N tensor aαβ in (13) the
following antisymmetric form:

aαβ(X) =
(

γ Θ(X) −λG(X)
λG(X) γ′F(X)

)
, λ, γ, γ′ ∈ R, (15)

we can show that the Moyal brackets (14) are, similarly to
the brackets defined in the preceding section, also a simple
deformation of the Poisson-like brackets introduced in (5).
Indeed if we develop the Moyal brackets up to the second
order in λ, γ and γ′ we obtain

[f(X), h(X)]� = {f(X), h(X)} (16)

+γ Θij(X)
∂f(X)

∂xi

∂h(X)
∂xj

+ γ′F ij(X)
∂f(X)

∂ẋi

∂h(X)
∂ẋj

.

We recall that we will limit ourselves to the case Θij(X) = 0
and will omit the � symbol in the following.

3 sO(3) algebra

In this section we will particularly focus on the conse-
quences of the breaking of the sO(3) symmetry in a flat
space and in a curved space as well. In three dimensional
space the derivation of the Maxwell equations is quite for-
mal and we will consider only the case of magnetostatic
and electrostatic fields. The time dependent fields case can
easily be derived by adding an explicit time derivative to
the dynamical law (3). We do not have to add this term for
the four dimensional space case where the Maxwell equa-
tions are intrinsically Lorentz covariant, since the fields are
time dependent by construction.

3.1 sO(3) algebra in flat space

In a three dimensional flat space we have gij(x) = δij and
the Hamiltonian (10) of the Poisson structure then reads

H =
1
2

mẋiẋi + f(x). (17)

Before considering the sO(3) algebra, let us first derive the
particle equation of motion and the Maxwell field equations
from our formalism.

3.1.1 Maxwell equations

The Jacobi identity (2) involving position and velocity com-
ponents,

m

γ′ J(xi, ẋj , ẋk) =
∂Fjk(X)

∂ẋi
= 0, (18)

shows that the gauge curvature is velocity independent,
F ij(X) ≡ F ij(x). From the Jacobi identity (2) involving
only velocities’ components we derive the Bianchi equation,

m

γ′ J(ẋi, ẋj , ẋk) = εk
ji

∂F ij(x)
∂xk

= 0, (19)

which, if we set F ij(x) = εji
kBk(x), gives the following

Maxwell equation:
∇ ·B = 0. (20)

Now using the dynamical equation (3) we obtain the fol-
lowing equation of motion:

mẍi = m
[
ẋi, H

]
= qF ij(x)ẋj + qEi (x) , (21)

where

qEi (x) = − ∂f(x)
∂xi

. (22)

We then have a particle of mass m and electrical charge
q moving in flat space in the presence of a magnetostatic
and an electrostatic external field. In order to get the usual
form (21) for the equation of motion we have set γ′ = q/m2

in the definition (8).
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We are able now to derive the other Maxwell equation
of the first group. With the dynamical equation (3) we
express the time derivative of the magnetic field,

dBi

dt
=

1
2

εi
jk

[
F jk, H

]
=

1
2γ′ ε

i
jk

[[
ẋj , ẋk

]
, H

]
, (23)

and we use the Jacobi identy (2) to rewrite the last term
of the last equation. After some calculus we obtain

dBi

dt
= −ẋi∇ ·B +

∂Bi

∂xj
ẋj + εi

jk
∂Ej

∂xk
, (24)

which using (20) gives the second Maxwell equation

∂B
∂t

= −∇×E = 0 (25)

for static fields and electric fields deriving from any poten-
tial f(x) (22).

As the two other Maxwell equations are not Galilean
covariant they cannot be deduced from the formalism and
can be merely seen as a definition of the charge density and
the current density. Nevertheless, as shown in the next sec-
tion the complete set of Maxwell equations can be deduced
in the relativistic generalization.

3.1.2 sO(3) algebra and Poincaré momentum

One of the most important symmetries in physics is natu-
rally the spherical symmetry corresponding to the isotropy
of the physical space. This symmetry is related to the
sO(3) algebra. In the following we show that this symme-
try is broken when an electromagnetic field is applied. In
order to study the symmetry breaking of the sO(3) alge-
bra we use the usual angular momentum Li = mεi

jkxj ẋk

which is a constant of motion in the absence of a gauge
field. In fact, there being no electromagnetic field implies
F ij(x) =

[
ẋi, ẋj

]
= 0, and the expression of the sO(3)

Lie algebra with our brackets (4) gives then the standard
algebra defined in terms of the Poisson brackets (5)


[
xi, Lj

]
=

{
xi, Lj

}
= εij

kxk,[
ẋi, Lj

]
=

{
ẋi, Lj

}
= εij

kẋk,[
Li, Lj

]
=

{
Li, Lj

}
= εij

kLk.

(26)

When the electromagnetic field is turned on, this algebra
is broken in the following manner:



[
xi, Lj

]
=

{
xi, Lj

}
= εij

kxk,[
ẋi, Lj

]
=

{
ẋi, Lj

}
+ q

m εj
klx

kF il(x)
= εij

kẋk + q
m εj

klx
kF il(x),[

Li, Lj
]

=
{
Li, Lj

}
+qεi

klε
j
msx

kxmF ls(x)
= εij

kLk +qεi
klε

j
msx

kxmF ls(x).

(27)

In order to restore the sO(3) algebra we introduce a new
angular momentum M i(X) which is a priori position and

velocity dependent. We consider then the following trans-
formation law:

Li(X)→ Li(X) = Li(X) + M i(X), (28)

and we require that this new angular momentumLi verifies
the usual sO(3) algebra,


[
xi,Lj

]
=

{
xi,Lj

}
= εij

kxk,[
ẋi,Lj

]
=

{
ẋi,Lj

}
= εij

kẋk,[Li,Lj
]

=
{Li,Lj

}
= εij

kLk.

(29)

These equations, (29), then give three constraints on the
expression of the angular momentum Li. From the first
relation in (29) we easily deduce that M i is velocity inde-
pendent,

M i(X) = M i(x), (30)

and from the second relation we obtain

[
ẋi, M j

]
= − 1

m

∂M j(x)
∂xi

= − q

m
εj

klx
kF il(x), (31)

and finally the third relation gives

M i =
1
2

qεjklx
ixkF jl(x) = −q (x ·B) xi. (32)

Equations (31) and (32) are compatible only if the magnetic
field B is the Dirac magnetic monopole field,

B =
g

4π
x

‖x‖3 . (33)

The vector M allowing us to restore the sO(3) symme-
try (29) is then the Poincaré momentum [5]

M = − qg

4π
x
‖x‖ ,

already found in a preceding paper [4]. The total angular
momentum is then

L = L− qg

4π
x
‖x‖ . (34)

This expressionwas initially foundbyPoincaré in a different
context [5]. Actually he was looking for a new angular
momentum that would be a constant of motion. In our
framework this property is trivially verified by using the
dynamical relation (3).

Let us now discuss an important point. As the Dirac
magnetic monopole is located at the origin we have

J(ẋi, ẋj , ẋk) = ∇ ·B = gδ3(x). (35)

The preservation of the sO(3) symmetry in the presence of
a gauge field is then incompatible with the requirement of
the Jacobi identity at the origin of the coordinates and we
have to exclude the origin from the manifold M. As the
Jacobi identity is the infinitesimal statement of associativ-
ity in the composition law of the translation group [23],
the breakdown of the Jacobi identity (35) when ∇ ·B �= 0
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implies that finite translations do not associate. In the
usual quantum mechanics non-associativity between op-
erators acting on the Hilbert space cannot be tolerated;
one has to use Dirac’s quantization procedure to save the
associativity (35).

In order to consider quantum mechanics within our
framework we have to quantify as usual the total angular
momentum L. Considering the rest frame of the particle
we have the following Dirac quantization:

gq

4π
=

n

2
�. (36)

Note that the Poincaré momentum is also related to the
Wess–Zumino term introduced by Witten in the case of a
simple mechanical problem [24]. Indeed let us consider a
particle of mass m constrained to move on a two dimen-
sional sphere of radius 1 with a spatial-temporal reflection
symmetry. The system can be seen as a particle submitted
to a strength having the following form: qgεijkxkẋj , which
is interpreted by Witten as a Lorentz force acting on an
electric charge q in interaction with a magnetic monopole
of magnetic charge g located at the center of the sphere. In
the quantum version of this system Witten has recovered
the Dirac quantization condition by means of topologi-
cal techniques.

3.2 sO(3) algebra in curved space

The Hamiltonian is now defined in a curved space by

H =
1
2

mgij(x)ẋiẋj + f(x), (37)

where the metric gij(x) is now position dependent.

3.2.1 Maxwell equations

The commutation relations for contravariant components
are now in a curved space



[
xi, xj

]
= 0,[

xi, ẋj
]

=
1
m

gij(x),[
ẋi, ẋj

]
=

q

m2 F ij(X).

(38)

Then for covariant components we have


[xi, xj ] = 0,

[xi, ẋj ] =
1
m

gij(x) +
1
m

(∂jgik) xk,

[ẋi, ẋj ] =
q

m2 Fij(X) +
1
m

(∂jgik − ∂igjk) ẋk.

(39)

Using the Jacobi identity J(xk, ẋi, ẋj) = 0 and using the
fact that gikgkj = δi

j we find the following expression for
the general gauge field:

q

m2 Fij (X) = gikgjlFkl (X) (40)

=
1
m

(∂igjk − ∂jgik) ẋk +
q

m2 Fij (x) ,

whereFij (x) is a velocity independent gauge field. From the
last equation in (39) we easily deduce that the commutator
between covariant velocities is only position dependent,

[ẋi, ẋj ] =
q

m2 Fij (x) . (41)

Again with the dynamical equation (3) and with the above
commutation relations we derive the equation of motion of
a particle in a curved space in the presence of magnetostatic
and electrostatic fields,

mẍi = −Γ i,jkẋj ẋk + qF ij(x)ẋj + qEi (x) , (42)

where the Christoffel symbols are defined by

Γ i,jk =
1
2

(−∂jgik + ∂igjk − ∂kgij). (43)

The Jacobi identity J (ẋi, ẋj , ẋk) = 0 gives directly the
first Maxwell equation of the first group,

∂iFjk + ∂jFki + ∂kFij = 0, (44)

and if we follow the same procedure as in the flat space
we also recover the second Maxwell equation of the first
group for the static fields,

∂tBi = −εi
jk∂jEk = 0.

As in the flat space case the second group of Maxwell
equations are considered as the definition of the charge and
the current density.

3.2.2 sO(3) algebra and Poincaré momentum

We define the angular momentum in a three dimensional
curved space by the usual relations:{

Li = m
√

g(x)εijkxj ẋk = mEijk(x)xj ẋk,

Li = m
√

g(x)gij(x)εjklx
kẋl = mEijk(x)xj ẋk,

(45)

where g(x) = det (gij(x)) =
(
det

(
gij(x)

))−1. Using the
relation ∂ig(x) = g(x)gjk(x)∂ig

jk(x) we easily show that
the sO(3) algebra symmetry is broken in the following man-
ner:


[
xi, Lj

]
=

{
xi, Lj

}
= Eij

k(x)xk,[
ẋi, Lj

]
=

{
ẋi, Lj

}
+

q

m
Ej

kl(x)xkF il(X)

= Eij
k(x)xk − 1

2
Ej

kl(x)xkẋlgmn(x)∂igmn(x)

+
q

m
Ej

kl(x)xkF il(X),[
Li, Lj

]
=

{
Li, Lj

}
+ qEi

kl(x)Ej
mn(x)xkxmF ln (X)

= Eij
k(x)Lk

+
m

2
(
gab∂ngab(x)

)
× (

Ei
klEj

m
n − Ej

klEi
m

n
)
xmxkẋl

+qEi
kl(x)Ej

mn(x)xkxmF ln(X).
(46)
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In order to restore the sO(3) symmetry as in the flat case we
perform the following transformation on the angular mo-
mentum:

Li(X)→ Li(X) = Li(X) + M i(X), (47)

and we thus impose the constraints


[
xi,Lj

]
= Eij

kxk,[
ẋi,Lj

]
= Eij

kẋk,[Li,Lj
]

= Eij
kLk.

(48)

The first equation in (48) implies that the new angular
momentum is velocity independent, M i(X) = M i(x); the
second equation in (48) then gives

[
ẋi, M j

]
= − q

m
Ej

lmF imxl. (49)

This last equation is similar to (31) found for the flat space
case, and the angular momentum M is then the Poincaré
momentum

M i(x) =
1
2

qEjkl(x)F jl(x)xixk = −q (x ·B) xi. (50)

Still, this kind of relation, (50), implies a Dirac magnetic
monopole field

B =
g

4π
x

‖x‖3 . (51)

We have then shown that the sO(3) symmetry algebra in
curved space is restored by introducing the same Dirac
magnetic monopole as we introduce in the flat space case.

4 Lorentz algebra in a curved space

The natural extension of the previous computation is ob-
viously the study of the Lorentz algebra in a curved space.
In this section we consider the following Hamiltonian:

H =
1
2

mgµυ(x)ẋµẋν , (52)

where gµν (x) is the metric of the Riemannian manifoldM.

4.1 Maxwell equations

The simple commutation relations between positions and
velocities coordinates are



[xµ, xν ] = 0,

[xµ, ẋν ] =
1
m

gµν(x),

[ẋµ, ẋν ] =
q

m2 Fµν(X),

[ẋµ, ẋν ] =
q

m2 Fµν(x)

=
q

m2 Fµν(X) + (∂νgµρ − ∂µgνρ) ẋρ,

(53)

from which we easily derive the equation of motion:

mẍµ = −Γµνρẋν ẋρ + qFµν(x)ẋν . (54)

The Jacobi identity J (ẋµ, ẋν , ẋρ) = 0 directly gives

∂µFνρ + ∂νFρµ + ∂ρFµν = 0, (55)

which is the first group of the Maxwell equations. The other
Jacobi identity J (ẋµ, ẋν , ẋν) = 0 gives us the relation

[ẋν , [ẋµ, ẋν ]] = − [ẋν , [ẋν , ẋµ]] =
q

m3 ∂νFνµ, (56)

where the quantity ∂νFνµ is a priori different from zero. We
then define the second group of the generalized Maxwell
equations by

{
∂νFνµ = 0 , for the vacuum,

∂νFνµ = jµ , for a medium with a current density jα.

}
(57)

4.2 Lorentz algebra and Poincaré momentum

It is convenient to define the angular quadrimomentum by

Lµν = m (xµẋν − xν ẋµ) , (58)

which gives a deformed Lorentz algebra with the follow-
ing structure:


[xµ, Lρσ] = {xµ, Lρσ}
= gµσ(x)xρ − gµρ(x)xσ + xρx

λ∂σgµλ(x)
−xσxλ∂ρgµλ(x),

[ẋµ, Lρσ] = {ẋµ, Lρσ}+
q

m
(Fµσ(x)ẋρ − Fµρ(x)ẋσ)

= gµσ(x)ẋρ − gµρ(x)ẋσ + ẋρx
λ∂σgµλ(x)

−ẋσxλ∂ρgµλ(x) +
q

m
(Fµσ(x)ẋρ − Fµρ(x)ẋσ),

[Lµν , Lρσ] = {Lµν , Lρσ}
+q(xµxρFνσ(x)− xνxρFµσ(x) + xµxσFρν(x)
−xνxσFρµ(x))

= gµρ(x)Lνσ − gνρ(x)Lµσ + gµσ(x)Lρν − gνσ(x)Lρµ

+m
(
xρẋνxλ∂µgλσ(x)− xν ẋρx

λ∂σgλµ(x)
+xµẋρx

λ∂σgλµ(x)− xρẋµxλ∂µgλσ(x)
+xν ẋσxλ∂µgλρ(x)− xσẋνxλ∂ρgλµ(x)
+xσẋµxλ∂ρgλν(x)− xµẋσxλ∂νgλρ(x)

)
+q(xµxρFνσ(x)− xνxρFµσ(x) + xµxσFρν(x)
−xνxσFρµ(x)).

(59)

We apply here the same scheme as used for the sO(3)
algebra; we restore the Lorentz symmetry by using the
following angular quadrimomentum transformation law:

Lµν(X)→ Lµν(X) = Lµν(X) + Mµν(X) (60)
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and by requiring the usual structure


[xµ,Lρσ] = {xµ,Lρσ} = gµσxρ − gµρxσ,

[ẋµ,Lρσ] = {ẋµ,Lρσ} = gµσẋρ − gµρẋσ,

[Lµν ,Lρσ] = {Lµν ,Lρσ} = gµρLυσ − gνρLµσ

+gµσLρν − gνσLρµ.

(61)

From (61) we easily deduce that the quadrimomentum Mµν

is only position dependent, Mµν(X) = Mµν(x). Then (61)
also gives

[ẋµ, Mρσ] =
q

m
(Fµσxρ − Fµρxσ). (62)

This result (62) with the third relation given in (61) give
us the following relation:

gµρMνσ − gνρMµσ + gµσMρν − gνσMρµ (63)

= q(Fνσxµxρ − Fµσxνxρ + Fρνxµxσ − Fρµxνxσ),

which will define the quadrimomentum Mµν .
First, let us consider the case ν = σ = i, where i =

1, 2, 3, and with a sum over i. Equation (63) then becomes

−gi
ρMµi(x) + gµ

iMρi(x)− 3Mρµ(x) (64)

= q(−Fµi(x)xixρ + Fρi(x)xµxi − Fρµ(x)x2).

Now setting ρ = j and µ = k, we obtain

Mij = q(Fijx
kxk − F jkxkxi − Fkix

kxj), (65)

which is nothing more than the generalization of the pre-
viously found equations (32) and (50). Mij is then the
quadrimomentum related to the previously found Poincaré
momentum Mi. Indeed using the definition of the quad-
rimomentum Mi = εi

jkMjk, we retrieve for the spatial
degrees of freedom (i = 1, 2, 3) the Poincaré momentum

M = −q(x ·B)x. (66)

Using now (66) and (62) we obtain the set of equations{
xiBj + xjBi = −xjx

k∂iBk,

F0jxi − F0ixj = (x×E)k �=i,j = 0,
(67)

whose solutions are radial vector fields centered at the origin


B =
g

4π
x

‖x‖3 ,

E = q′f(x)x.
(68)

It is straightforward to see that our results are still valid
for a flat quadridimensional space. We have then shown
that the Lorentz symmetry in a curved and in a flat space
is restored if the magnetic field is the Dirac monopole
magnetic field and if the electric field is radial.

Consider now the “boost” part of (63). For ρ = 0, and
µ = j, (64) corresponds to the temporal components of
the Poincaré tensor,

M0j = q(−Fjix
ix0 − F0ixjx

i + F0jx2). (69)

This relation can also be written

M0j = q
[
− (x×B)j x0 − (x ·E) xj + x2Ej

]
, (70)

which for the solution (68) gives the result

M0j = 0.

The temporal component of the generalized angularmo-
mentum Mµν which restores the Lorentz symmetry mixes
the electric and the magnetic fields in such way that it
is equal to zero, whereas the spatial components of Mµν

are only magnetic field dependent and correspond to the
usual Poincaré momentum components. It is important to
be precise in that the equations (68) imply that the source
of the electromagnetic field is created by a Schwinger dyon
of magnetic charge g and electric charge q′.

In the next section we extend our model by adding to the
electromagnetic Fµν tensor its dual ∗Fµν in a curved space
and we deduce in the frame of gravitoelectromagnetism a
quantization of the dyon’s mass.

4.3 Gravitoelectromagnetism

In order to interpret the experimental tests of gravita-
tion theories, the parametrized post-Newtonian formalism
(PPN) is often used [25], where the limit of low velocities
and small stresses is taken. In this formalism, gravity is de-
scribed by a general type metric containing dimensionless
constants call PPN-parameters, which are powerful tools
in theoretical astrophysics. This formalism was applied by
Braginski et al. [26] to propose laboratory experiments to
test relativistic gravity and in particular to study gravi-
toelectromagnetism. They analyzed magnetic and electric
type gravity using a truncated and rewritten version of the
PPN formalism by deleting certain parameters not present
in general relativity and all gravitational non-linearities.
In a theoretical paper [9] Mashhoon has considered several
important quantities relative to this theory, like field equa-
tions, gravitational Larmor precession or the stress-energy
tensor. He introduced gravitoelectromagnetism which is
based upon the formal analogy between gravitational New-
ton potential and electric Coulomb potential. A long time
ago, Holzmuller [27] and Tisserand [28] have already pos-
tulated gravitational electromagnetic components for the
gravitational influence of the sun on the motion of plan-
ets. More recently, Mashhoon [9] has considered a particle
of inertial mass m which has also a gravitoelectric charge
qE = −m and gravitomagnetic charge qM = −2m, the
numerical factor 2 coming from the spin character of the
gravitational field. In the final part of this work we apply
our formalism to this last idea.

Suppose that gravitation creates a gravitoelectromag-
netic field characterized by Fµν(x) and ∗Fµν(x), where the
symbol ∗ stands here for the Hodge duality. We then have

[ẋµ, ẋν ] = − 1
m2 (qFµν(x) + g∗Fµν(x)), (71)

where q and g are respectively the gravitoelectric and the
gravitomagnetic charge of a Schwinger dyon moving in this
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gravitoelectromagnetic field. At the end of this section we
will choose like Mashoon an explicit relation between the
charges q and g and the inertial mass m. By a direct appli-
cation of our formalism developed in Sect. 4 the equation
of motion of our dyon particle is obtained:

mẍµ = −Γµνρẋν ẋρ + (qFµν(x) + g∗Fµν(x)) ẋν . (72)

In order to restore the Lorentz symmetry in a curved
space we introduce the generalized angular momentum now
expressed in terms of the electromagnetic field and its dual.
For the spatial components we have the following equation:

M ij = q(Fijx
kxk − Fjkxkxi − Fkix

kxj)

+g(∗Fijx
kxk −∗Fjkxkxi −∗Fkix

kxj), (73)

which shows that the new angular momentum is the sum
of two contributions, a gravitomagnetic one and a gravi-
toelectric one:

M = Mm + Me, (74)
where {

Mm = −q(x ·B)x,

Me = g(x ·E)x
(75)

are respectively the gravitomagnetic and gravitoelectric
angular momenta. Introducing the notation P = q′B−g′E
we can show that the Lorentz symmetry is restored by the
Poincaré-like angular momentum

M = −(x ·P)x, (76)

where P has the Dirac-like form

P ∼ x

4π ‖x‖3 . (77)

A possible choice for the electromagnetic field is then to
choose a dyon source responsible for the Dirac and the
Coulomb monopole fields,


B =

g′

4π
x
‖x‖ ,

E = − q′

4π
x
‖x‖ ,

(78)

so that
P = (q′g + g′q)

x

4π ‖x‖3 . (79)

Consequentlywehave a gravitoelectromagnetic dyon (char-
acterized by its mass m and its charges q and g) moving in
a gravitoelectromagnetic monopole field created by a dyon
(characterized by its mass m′ and its charges q′ and g′).

From the quantization of (76) with P given by (79) we
deduce the following relation:

q′g + g′q
4π

=
n�

2
. (80)

We postulate as in [9] the following relations between the
gravitoelectromagnetic charges and the inertial masses:


q = a

√
Gm,

g = b
√

Gm,

q′ = a
√

Gm′,
g′ = b

√
Gm′,

(81)

where a and b are two constants and G is the gravitational
constant. We also have

qM

qE
=

q′
M

q′
E

=
b

a
= s,

which isMashhoon’s relation between electric andmagnetic
charges and the spin of the gauge boson interaction. In the
gravitoelectromagnetic theory we naturally choose s = 2;
we then deduce the following mass condition for the dyons:

m m′ = nA
hc

G
= nAM2

P, (82)

where A is a dimensionless constant and n is an integer
number in the Schwinger formalism (bosonic spectrum) and
a half integer number in the Dirac formalism (fermionic
and bosonic spectrum), MP being the Planck mass.

5 Conclusion

In this paper we have introduced a Poisson structure with
dynamics defined through a covariant Hamiltonian. Our
formalism could also be expressed in terms of a generaliza-
tion of the Moyal brackets defined on the tangent bundle
space. In non-commutative theories the parameter Θij ex-
presses the non-commutativity of the positions, whereas
in our construction it is the electromagnetic field F ij (x)
which induces the non-commutativity of the velocities. Our
aim was to find the generalized angular momentum which
enables us to restore the Lie algebra symmetry (sO(3) and
Lorentz) of the angular momentum which is broken by
the electromagnetic field, i.e. by the non-commutativity of
the velocities. The solution is the Poincaré angular mo-
mentum in the flat space case as well as in the curved
space case. The formalism was applied in the framework of
the gravitoelectromagnetism, where it was shown that the
Dirac and the Coulomb monopoles allow one to build both a
magnetic and an electric Poincaré-like angular momentum,
which restores the Lorentz algebra symmetry in a curved
space. The quantization of the total angular momentum
and Mashoon’s relation between the gravitoelectromag-
netic charges and the inertial masses lead to a qualitative
condition on the mass spectrum.

It would be interesting to extend our approach to the
context of the non-commutativity theory where Θij �= 0;
work in that direction is in progress [3].

Acknowledgements. A.B. would like to thank Patrice Pérez for
helpful discussions.
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